NA 2017 W7

PROBLEM 1

Use linear least square method (x=a0+a1*x) by hand to fit data to the following equation

Y 9 6 5 10	Х	2	3	4	7
	Y	9	6	5	10

PROBLEM 2

Fit cubic spline interpolation Formula to the following equation by computer

х	Y
0	0
1	1
2	4
3	8

PROBLEM 3

Enthapy of a saturated water will be approximated by the equation

 $h_f = A + Bt + Ct^2 + Dt^3$

Following data is taken from the thermodynamic table. Find the polynomial coefficient by **using least square computer program**

t, °C	10	30	50	70	90
$h_{\rm f}$, kJ/kg	41.99	125.66	209.26	292.97	376.94

PROBLEM 4

Force aplied to a linear spring is given with the Formula F=kx according to Hooke law. In this equation k is the spring constant and x is the displacement. Experiment is being carried out and found the following results between displacement and Force. Estimate spring constant k (**use computer programs**)

- a) By using Newton Interpolation Formula
- b) By using Lagrange interpolation Formula
- c) By using least square curve fitting

X, m	0.02	0.04	0.06	0.08	0.1
F, kN	3.1	6.1	9.2	12	15.1

PROBLEM 5

Depth (H) and velocity (U) profile of a channel is given belove

x, m	0	2	4	6	8	10	12	14	16	18	20	

H, m	0	1.8	2	4	4	6	4	3.6	3.4	2.8	0	
U m/s	0	0.03	0.045	0.055	0.065	0.12	0.07	0.06	0.05	0.04	0	

Curve fit to H(x) and U(x) functions by using (Computer programming)

- a) Cubic spline interpolation formula
- **b**) Polinomial least sqare formula
- c) Lagrange interpolation formula

PROBLEM 6

Thermal conductivity coefficient of water for different temperature values are given in the belove table

Teöperature T. [K]	275	290	305	320	340	360
Thermal conductivity coefficient k . [W/(m [·] K)]	0.574	0.598	0.620	0.640	0.660	0.674

a-) curvefit the following equation to thermal conductivity-temperature relation by using hand calculations:

$$k = A \cdot T + B$$

b-) Calculate thermal conductivity for T=300 K.

.

PROBLEM 7

Enthapy of a saturated water will be approximated by the following equation

$$h_f = A + Bt + Ct^2 + Dt^3$$

Following data is taken from the thermodynamic table. Find the polynomial coefficient by using polinomial least square by hand calculations

t, °C	10	30	50	70	90
$h_{\rm f}$, kJ/kg	41.99	125.66	209.26	292.97	376.94